跳转至

Chat agent

labridge.agent.chat_agent

labridge.agent.chat_agent.LabChatAgent

This is the Chat agent following the ReAct framework, with access to multiple tools ranging papers, instruments and experiments.

Source code in labridge\agent\chat_agent.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
class LabChatAgent:
	r"""
	This is the Chat agent following the ReAct framework, with access to multiple tools
	ranging papers, instruments and experiments.
	"""

	def __init__(
		self,
		chat_engine: InstructReActAgent = None,
	):
		self._chat_engine = chat_engine
		self._short_memory_manager = ShortMemoryManager()
		self._account_manager = AccountManager()
		self._chatting_status = {}
		self.reset_chatting_status()

	def reset_chatting_status(self):
		users = self._account_manager.get_users()
		self._chatting_status = {user: False for user in users}

	def update_chatting_status(self):
		users = self._account_manager.get_users()
		new_chatting_status = {user: False for user in users if user not in self._chatting_status.keys()}
		self._chatting_status.update(new_chatting_status)

	@property
	def chat_engine(self) -> InstructReActAgent:
		if self._chat_engine is None:
			self._chat_engine = self.get_chat_engine()
		return self._chat_engine

	def is_chatting(self, user_id: str) -> bool:
		return self._chatting_status[user_id]

	def set_chatting(self, user_id: str, chatting: bool):
		self._chatting_status[user_id] = chatting

	@property
	def short_memory_manager(self):
		return self._short_memory_manager

	async def chat(self, packed_msgs: PackedUserMessage) -> AgentResponse:
		r""" Chat with agent. """
		user_id = packed_msgs.user_id
		self.set_chatting(user_id=user_id, chatting=True)
		packed_json = packed_msgs.dumps()
		chat_history = self.short_memory_manager.load_memory(user_id=user_id)

		response = await self.chat_engine.achat(
			message=packed_json,
			chat_history=chat_history,
		)
		chat_history = self.chat_engine.memory.get()
		self.short_memory_manager.save_memory(user_id=user_id, chat_history=chat_history)
		self.chat_engine.reset()

		ref_paths = response.metadata["references"]
		if len(ref_paths) < 1:
			ref_paths = None

		agent_response = AgentResponse(
			response=response.response,
			references=ref_paths,
		)
		return agent_response

	def test_chat(self, packed_msgs: PackedUserMessage) -> AgentResponse:
		r""" Debug. """
		user_id = packed_msgs.user_id
		self.set_chatting(user_id=user_id, chatting=True)
		packed_json = packed_msgs.dumps()
		chat_history = self.short_memory_manager.load_memory(user_id=user_id)

		response = self.chat_engine.chat(
			message=packed_json,
			chat_history=chat_history,
		)
		chat_history = self.chat_engine.memory.get()
		self.short_memory_manager.save_memory(user_id=user_id, chat_history=chat_history)

		ref_paths = response.metadata["references"]
		if len(ref_paths) < 1:
			ref_paths = None

		agent_response = AgentResponse(
			response=response.response,
			references=ref_paths,
		)
		return agent_response

	def get_tools(self) -> List[AsyncBaseTool]:
		r""" Available tools. """
		return [
			ChatMemoryRetrieverTool(),
			ExperimentLogRetrieveTool(),
			CreateNewExperimentLogTool(),
			SetCurrentExperimentTool(),
			RecordExperimentLogTool(),
			SharedPaperRetrieverTool(),
			ArXivSearchDownloadTool(),
			AddNewRecentPaperTool(),
			RecentPaperRetrieveTool(),
			RecentPaperSummarizeTool(),
			InstrumentRetrieverTool(),
			XYPlatformMoveTool(),
		]

	def get_chat_engine(self) -> InstructReActAgent:
		tools = self.get_tools()
		react_chat_formatter = ReActChatFormatter.from_defaults(system_header=LABRIDGE_CHAT_SYSTEM_HEADER)
		chat_engine = InstructReActAgent.from_tools(
			tools=tools,
			react_chat_formatter=react_chat_formatter,
			verbose=True,
			llm=Settings.llm,
			memory=ChatMemoryBuffer.from_defaults(token_limit=3000),
			enable_instruct=False,
			enable_comment=False,
			max_iterations=20,
		)
		return chat_engine

labridge.agent.chat_agent.LabChatAgent.chat(packed_msgs) async

Chat with agent.

Source code in labridge\agent\chat_agent.py
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
async def chat(self, packed_msgs: PackedUserMessage) -> AgentResponse:
	r""" Chat with agent. """
	user_id = packed_msgs.user_id
	self.set_chatting(user_id=user_id, chatting=True)
	packed_json = packed_msgs.dumps()
	chat_history = self.short_memory_manager.load_memory(user_id=user_id)

	response = await self.chat_engine.achat(
		message=packed_json,
		chat_history=chat_history,
	)
	chat_history = self.chat_engine.memory.get()
	self.short_memory_manager.save_memory(user_id=user_id, chat_history=chat_history)
	self.chat_engine.reset()

	ref_paths = response.metadata["references"]
	if len(ref_paths) < 1:
		ref_paths = None

	agent_response = AgentResponse(
		response=response.response,
		references=ref_paths,
	)
	return agent_response

labridge.agent.chat_agent.LabChatAgent.get_tools()

Available tools.

Source code in labridge\agent\chat_agent.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def get_tools(self) -> List[AsyncBaseTool]:
	r""" Available tools. """
	return [
		ChatMemoryRetrieverTool(),
		ExperimentLogRetrieveTool(),
		CreateNewExperimentLogTool(),
		SetCurrentExperimentTool(),
		RecordExperimentLogTool(),
		SharedPaperRetrieverTool(),
		ArXivSearchDownloadTool(),
		AddNewRecentPaperTool(),
		RecentPaperRetrieveTool(),
		RecentPaperSummarizeTool(),
		InstrumentRetrieverTool(),
		XYPlatformMoveTool(),
	]

labridge.agent.chat_agent.LabChatAgent.test_chat(packed_msgs)

Debug.

Source code in labridge\agent\chat_agent.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def test_chat(self, packed_msgs: PackedUserMessage) -> AgentResponse:
	r""" Debug. """
	user_id = packed_msgs.user_id
	self.set_chatting(user_id=user_id, chatting=True)
	packed_json = packed_msgs.dumps()
	chat_history = self.short_memory_manager.load_memory(user_id=user_id)

	response = self.chat_engine.chat(
		message=packed_json,
		chat_history=chat_history,
	)
	chat_history = self.chat_engine.memory.get()
	self.short_memory_manager.save_memory(user_id=user_id, chat_history=chat_history)

	ref_paths = response.metadata["references"]
	if len(ref_paths) < 1:
		ref_paths = None

	agent_response = AgentResponse(
		response=response.response,
		references=ref_paths,
	)
	return agent_response