跳转至

React step

labridge.agent.react.react_step

labridge.agent.react.react_step.InstructReActAgentWorker

Bases: ReActAgentWorker

Source code in labridge\agent\react\react_step.py
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
class InstructReActAgentWorker(ReActAgentWorker):
	def __init__(
		self,
		tools: Sequence[BaseTool],
		llm: LLM,
		user_id_list: List[str],
		chat_group_id_list: List[str],
		max_iterations: int = 10,
		react_chat_formatter: Optional[ReActChatFormatter] = None,
		output_parser: Optional[ReActOutputParser] = None,
		callback_manager: Optional[CallbackManager] = None,
		verbose: bool = False,
		tool_retriever: Optional[ObjectRetriever[BaseTool]] = None,
		handle_reasoning_failure_fn: Optional[Callable[[CallbackManager, Exception], ToolOutput]] = None,
		enable_instruct: bool = False,
	):
		self._enable_instruct = enable_instruct
		self._instruct_chat_formatter = InstructChatFormatter()
		self.user_id_list = user_id_list
		self.chat_group_id_list = chat_group_id_list
		super().__init__(
			tools=tools,
			llm=llm,
			max_iterations=max_iterations,
			react_chat_formatter=react_chat_formatter,
			output_parser=output_parser,
			callback_manager=callback_manager,
			verbose=verbose,
			tool_retriever=tool_retriever,
			handle_reasoning_failure_fn=handle_reasoning_failure_fn,
		)

	def set_enable_instruct(self, enable: bool):
		self._enable_instruct = enable

	@property
	def enable_instruct(self):
		r""" Enable user's instruction in reasoning phase. """
		return self._enable_instruct

	@classmethod
	def from_tools(
		cls,
		tools: Optional[Sequence[BaseTool]] = None,
		tool_retriever: Optional[ObjectRetriever[BaseTool]] = None,
		llm: Optional[LLM] = None,
		user_id_list: List[str] = None,
		chat_group_id_list: List[str] = None,
		max_iterations: int = 10,
		react_chat_formatter: Optional[ReActChatFormatter] = None,
		output_parser: Optional[ReActOutputParser] = None,
		callback_manager: Optional[CallbackManager] = None,
		verbose: bool = False,
		handle_reasoning_failure_fn: Optional[Callable[[CallbackManager, Exception], ToolOutput]] = None,
		enable_instruct: bool = False,
		**kwargs: Any,
	) -> "InstructReActAgentWorker":
		"""
		Convenience constructor method from set of BaseTools (Optional).

		NOTE: kwargs should have been exhausted by this point. In other words
		the various upstream components such as BaseSynthesizer (response synthesizer)
		or BaseRetriever should have picked up off their respective kwargs in their
		constructions.

		Returns:
			ReActAgentWorker
		"""
		llm = llm or Settings.llm
		if callback_manager is not None:
			llm.callback_manager = callback_manager
		return cls(
			tools=tools or [],
			tool_retriever=tool_retriever,
			user_id_list=user_id_list or AccountManager().get_users(),
			chat_group_id_list=chat_group_id_list or AccountManager().get_chat_groups(),
			llm=llm,
			max_iterations=max_iterations,
			react_chat_formatter=react_chat_formatter,
			output_parser=output_parser,
			callback_manager=callback_manager,
			verbose=verbose,
			handle_reasoning_failure_fn=handle_reasoning_failure_fn,
			enable_instruct=enable_instruct,
		)

	def initialize_step(self, task: Task, **kwargs: Any) -> TaskStep:
		"""Initialize step from task."""
		sources: List[ToolOutput] = []
		current_reasoning: List[BaseReasoningStep] = []
		# temporary memory for new messages
		new_memory = ChatMemoryBuffer.from_defaults()
		# the tool log list with ToolLogs.
		tool_log = []

		# initialize task state
		task_state = {
			"sources": sources,
			"current_reasoning": current_reasoning,
			"new_memory": new_memory,
			"tool_log": tool_log,
		}
		task.extra_state.update(task_state)

		return TaskStep(
			task_id=task.task_id,
			step_id=str(uuid.uuid4()),
			input=task.input,
			step_state={"is_first": True, "system_msg": task.extra_state["system_msg"]},
		)

	def _run_step(self, step: TaskStep, task: Task, ) -> TaskStepOutput:
		"""Run step."""
		user_id = task.extra_state["user_id"]
		if step.input is not None:
			step.step_state["user_id"] = user_id
			add_user_step_to_reasoning(
				step,
				task.extra_state["new_memory"],
				task.extra_state["current_reasoning"],
				verbose=self._verbose,
			)
		tools = self.get_tools(task.input)
		input_chat = self._react_chat_formatter.format(
			tools,
			chat_history=task.memory.get(input=task.input) + task.extra_state["new_memory"].get_all(),
			current_reasoning=task.extra_state["current_reasoning"],
		)

		# send prompt
		chat_response = self._llm.chat(input_chat)

		if task.extra_state["enable_instruct"]:
			# TODO: interface: Send the action to the user
			print_text(f">>> Initial reasoning: \n{chat_response.message.content}", color="pink", end="\n")
			# TODO: interface: Get the user's suggestion
			packed_msgs = ChatBuffer.test_get_user_text(
				user_id=user_id,
				enable_instruct=False,
				enable_comment=False,
			)

			user_advice = packed_msgs.user_msg
			# update enable_instruct and enable_comment
			update_intervene_status(
				task=task,
				enable_instruct=ChatBuffer.config_buffer[user_id].enable_instruct,
				enable_comment=ChatBuffer.config_buffer[user_id].enable_comment,
				reply_in_speech=ChatBuffer.config_buffer[user_id].reply_in_speech,
			)
			print_text(f">>> User's suggestion: \n{user_advice}", color="blue", end="\n")
			reasoning_step = ObservationReasoningStep(observation=f"User's suggestion: {user_advice}")
			task.extra_state["current_reasoning"].append(reasoning_step)

			instruct_chat = self._instruct_chat_formatter.format(
				tools,
				chat_history=task.memory.get(input=task.input) + task.extra_state["new_memory"].get_all(),
				current_reasoning=task.extra_state["current_reasoning"],
				prev_response=chat_response.message.content,
				suggestion=f"User's suggestion: {user_advice}",
			)
			chat_response = self._llm.chat(instruct_chat)
			print_text(f">>> Modified reasoning: \n{chat_response.message.content}", color="green", end="\n")

		# given react prompt outputs, call tools or return response
		reasoning_steps, is_done = self._process_actions(task, tools, output=chat_response)
		task.extra_state["current_reasoning"].extend(reasoning_steps)
		agent_response = self._get_response(task.extra_state["current_reasoning"], task.extra_state["sources"])

		if is_done:
			date, h_m_s = get_time()
			additional_kwargs = {
				LOG_DATE_NAME: date,
				LOG_TIME_NAME: h_m_s,
			}
			task.extra_state["new_memory"].put(
				ChatMessage(
					content=agent_response.response,
					role=MessageRole.ASSISTANT,
					additional_kwargs=additional_kwargs,
				)
			)

		return self._get_task_step_response(agent_response, step, is_done)

	async def _arun_step(self, step: TaskStep, task: Task, ) -> TaskStepOutput:
		"""Run step."""
		user_id = task.extra_state["user_id"]
		if step.input is not None:
			step.step_state["user_id"] = user_id
			add_user_step_to_reasoning(
				step,
				task.extra_state["new_memory"],
				task.extra_state["current_reasoning"],
				verbose=self._verbose,
			)

		tools = self.get_tools(task.input)

		input_chat = self._react_chat_formatter.format(
			tools,
			chat_history=task.memory.get(input=task.input) + task.extra_state["new_memory"].get_all(),
			current_reasoning=task.extra_state["current_reasoning"],
		)

		# send prompt
		chat_response = await self._llm.achat(input_chat)

		if task.extra_state["enable_instruct"]:
			# TODO: interface: Send the action to the user
			init_reasoning = (
				f"**当前Thought**:\n"
				f"{chat_response.message.content}\n"
				f"请您参与到我的Reasoning过程中,给予指导。我将参考您的建议对我的决策做出调整:"
			)

			ChatBuffer.put_agent_reply(
				user_id=user_id,
				reply_str=init_reasoning,
				inner_chat=True,
			)
			# TODO: interface: Get the user's suggestion
			packed_msgs = await ChatBuffer.get_user_msg(
				user_id=user_id,
			)

			user_advice = packed_msgs.user_msg
			system_msg = packed_msgs.system_msg
			# Update the enable_instruct and enable_comment
			update_intervene_status(
				task=task,
				enable_instruct=ChatBuffer.config_buffer[user_id].enable_instruct,
				enable_comment=ChatBuffer.config_buffer[user_id].enable_comment,
				reply_in_speech=ChatBuffer.config_buffer[user_id].reply_in_speech,
			)

			# Put the user's instruction into reasoning.
			system_step = ObservationReasoningStep(observation=f"<system>:{system_msg}")
			reasoning_step = ObservationReasoningStep(observation=f"User's suggestion: {user_advice}")
			task.extra_state["current_reasoning"].extend([system_step, reasoning_step])

			instruct_chat = self._instruct_chat_formatter.format(
				tools,
				chat_history=task.memory.get(input=task.input) + task.extra_state["new_memory"].get_all(),
				current_reasoning=task.extra_state["current_reasoning"],
				prev_response=chat_response.message.content,
				suggestion=f"User's suggestion: {user_advice}",
			)
			chat_response = await self._llm.achat(instruct_chat)

			# modified_reasoning = (
			# 	f"**参考您建议后的Thought**:\n"
			# 	f"{chat_response.message.content}\n\n"
			# 	f"我将根据这个Thought行动。"
			# )
			#
			# ChatBuffer.put_agent_reply(
			# 	user_id=step.step_state["user_id"],
			# 	reply_str=modified_reasoning,
			# 	inner_chat=True,
			# )

		# given react prompt outputs, call tools or return response
		reasoning_steps, is_done = await self._aprocess_actions(task, tools, output=chat_response)
		task.extra_state["current_reasoning"].extend(reasoning_steps)
		agent_response = self._get_response(task.extra_state["current_reasoning"], task.extra_state["sources"])
		if is_done:
			date, h_m_s = get_time()
			additional_kwargs = {
				LOG_DATE_NAME: date,
				LOG_TIME_NAME: h_m_s,
			}
			task.extra_state["new_memory"].put(
				ChatMessage(
					content=agent_response.response,
					role=MessageRole.ASSISTANT,
					additional_kwargs=additional_kwargs,
				)
			)

		return self._get_task_step_response(agent_response, step, is_done)

	def _process_actions(
		self,
		task: Task,
		tools: Sequence[AsyncBaseTool],
		output: ChatResponse,
		is_streaming: bool = False,
	) -> Tuple[List[BaseReasoningStep], bool]:
		tools_dict: Dict[str, AsyncBaseTool] = {tool.metadata.get_name(): tool for tool in tools}
		tool = None

		try:
			_, current_reasoning, is_done = self._extract_reasoning_step(output, is_streaming)
		except ValueError as exp:
			current_reasoning = []
			tool_output = self._handle_reasoning_failure_fn(self.callback_manager, exp)
		else:
			if is_done:
				return current_reasoning, True

			# call tool with input
			reasoning_step = cast(ActionReasoningStep, current_reasoning[-1])
			if reasoning_step.action in tools_dict:
				tool = tools_dict[reasoning_step.action]
				with self.callback_manager.event(
						CBEventType.FUNCTION_CALL,
						payload={EventPayload.FUNCTION_CALL: reasoning_step.action_input,
							EventPayload.TOOL: tool.metadata,
						},
				) as event:
					try:
						tool_output = tool.call(**reasoning_step.action_input)
					except Exception as e:
						tool_output = ToolOutput(
							content=f"Error: {e!s}",
							tool_name=tool.metadata.name,
							raw_input={"kwargs": reasoning_step.action_input},
							raw_output=e,
							is_error=True,
						)
					event.on_end(payload={EventPayload.FUNCTION_OUTPUT: str(tool_output)})
			else:
				tool_output = self._handle_nonexistent_tool_name(reasoning_step)

		task.extra_state["sources"].append(tool_output)

		tool_output_str, tool_log_str = unpack_tool_output(tool_out_json=tool_output.content)
		if tool is not None and tool.metadata.return_direct:
			observation = tool_output_str
		else:
			observation = f"Tool output:\n{tool_output_str}\nTool logs:\n{tool_log_str}"

		# record the tool log.
		if tool_log_str:
			tool_log = ToolLog.loads(log_str=tool_log_str)
			task.extra_state["tool_log"].append(tool_log)
			task.extra_state["new_memory"].put(
				ChatMessage(
					content=tool_log_str,
					role=MessageRole.TOOL,
				)
			)

		observation_step = ObservationReasoningStep(
			observation=observation,
			return_direct=(tool.metadata.return_direct and not tool_output.is_error if tool else False),
		)
		current_reasoning.append(observation_step)
		if self._verbose:
			print_text(f"{observation_step.get_content()}\n", color="blue")
		return (
			current_reasoning,
			tool.metadata.return_direct and not tool_output.is_error if tool else False,
		)

	async def _aprocess_actions(
		self,
		task: Task,
		tools: Sequence[AsyncBaseTool],
		output: ChatResponse,
		is_streaming: bool = False,
	) -> Tuple[List[BaseReasoningStep], bool]:
		tools_dict = {tool.metadata.name: tool for tool in tools}
		tool = None

		try:
			_, current_reasoning, is_done = self._extract_reasoning_step(output, is_streaming)
		except ValueError as exp:
			current_reasoning = []
			tool_output = self._handle_reasoning_failure_fn(self.callback_manager, exp)
		else:
			if is_done:
				return current_reasoning, True

			# call tool with input
			reasoning_step = cast(ActionReasoningStep, current_reasoning[-1])
			if reasoning_step.action in tools_dict:
				tool = tools_dict[reasoning_step.action]
				with self.callback_manager.event(CBEventType.FUNCTION_CALL,
						payload={EventPayload.FUNCTION_CALL: reasoning_step.action_input,
							EventPayload.TOOL: tool.metadata, }, ) as event:
					try:
						tool_output = await tool.acall(**reasoning_step.action_input)
					except Exception as e:
						tool_output = ToolOutput(content=f"Error: {e!s}", tool_name=tool.metadata.name,
							raw_input={"kwargs": reasoning_step.action_input}, raw_output=e, is_error=True, )
					event.on_end(payload={EventPayload.FUNCTION_OUTPUT: str(tool_output)})
			else:
				tool_output = self._handle_nonexistent_tool_name(reasoning_step)

		task.extra_state["sources"].append(tool_output)

		tool_output_str, tool_log_str = unpack_tool_output(tool_out_json=tool_output.content)
		if tool is not None and tool.metadata.return_direct:
			observation = tool_output_str
		else:
			observation = f"Tool output:\n{tool_output_str}\nTool logs:\n{tool_log_str}"

		# record the tool log.
		if tool_log_str:
			tool_log = ToolLog.loads(log_str=tool_log_str)
			task.extra_state["tool_log"].append(tool_log)
			task.extra_state["new_memory"].put(
				ChatMessage(
					content=tool_log_str,
					role=MessageRole.TOOL,
				)
			)

		observation_step = ObservationReasoningStep(observation=observation,
			return_direct=(tool.metadata.return_direct and not tool_output.is_error if tool else False), )

		current_reasoning.append(observation_step)
		if self._verbose:
			print_text(f"{observation_step.get_content()}\n", color="blue")
		return (
			current_reasoning, tool.metadata.return_direct and not tool_output.is_error if tool else False,
		)

	def finalize_task(self, task: Task, **kwargs: Any) -> None:
		"""Finalize task, after all the steps are completed."""
		user_id = task.extra_state.get("user_id", None)
		chat_group_id = task.extra_state.get("chat_group_id", None)

		if chat_group_id is not None:
			if chat_group_id in self.chat_group_id_list:
				update_chat_memory(
					memory_id=user_id,
					chat_messages=task.extra_state["new_memory"].get_all(),
				)
			else:
				if self._verbose:
					print_text(f"The chat group {chat_group_id} is not registered.", color="cyan", end="\n")
		else:
			if user_id in self.user_id_list:
				update_chat_memory(
					memory_id=user_id,
					chat_messages=task.extra_state["new_memory"].get_all(),
				)
			else:
				if self._verbose and user_id is not None:
					print_text(f"{user_id} is not registered as a user.", color="cyan", end="\n")

		# add new messages to memory
		task.memory.set(task.memory.get_all() + task.extra_state["new_memory"].get_all())
		# reset new memory
		task.extra_state["new_memory"].reset()

labridge.agent.react.react_step.InstructReActAgentWorker.enable_instruct property

Enable user's instruction in reasoning phase.

labridge.agent.react.react_step.InstructReActAgentWorker.finalize_task(task, **kwargs)

Finalize task, after all the steps are completed.

Source code in labridge\agent\react\react_step.py
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def finalize_task(self, task: Task, **kwargs: Any) -> None:
	"""Finalize task, after all the steps are completed."""
	user_id = task.extra_state.get("user_id", None)
	chat_group_id = task.extra_state.get("chat_group_id", None)

	if chat_group_id is not None:
		if chat_group_id in self.chat_group_id_list:
			update_chat_memory(
				memory_id=user_id,
				chat_messages=task.extra_state["new_memory"].get_all(),
			)
		else:
			if self._verbose:
				print_text(f"The chat group {chat_group_id} is not registered.", color="cyan", end="\n")
	else:
		if user_id in self.user_id_list:
			update_chat_memory(
				memory_id=user_id,
				chat_messages=task.extra_state["new_memory"].get_all(),
			)
		else:
			if self._verbose and user_id is not None:
				print_text(f"{user_id} is not registered as a user.", color="cyan", end="\n")

	# add new messages to memory
	task.memory.set(task.memory.get_all() + task.extra_state["new_memory"].get_all())
	# reset new memory
	task.extra_state["new_memory"].reset()

labridge.agent.react.react_step.InstructReActAgentWorker.from_tools(tools=None, tool_retriever=None, llm=None, user_id_list=None, chat_group_id_list=None, max_iterations=10, react_chat_formatter=None, output_parser=None, callback_manager=None, verbose=False, handle_reasoning_failure_fn=None, enable_instruct=False, **kwargs) classmethod

Convenience constructor method from set of BaseTools (Optional).

NOTE: kwargs should have been exhausted by this point. In other words the various upstream components such as BaseSynthesizer (response synthesizer) or BaseRetriever should have picked up off their respective kwargs in their constructions.

RETURNS DESCRIPTION
InstructReActAgentWorker

ReActAgentWorker

Source code in labridge\agent\react\react_step.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@classmethod
def from_tools(
	cls,
	tools: Optional[Sequence[BaseTool]] = None,
	tool_retriever: Optional[ObjectRetriever[BaseTool]] = None,
	llm: Optional[LLM] = None,
	user_id_list: List[str] = None,
	chat_group_id_list: List[str] = None,
	max_iterations: int = 10,
	react_chat_formatter: Optional[ReActChatFormatter] = None,
	output_parser: Optional[ReActOutputParser] = None,
	callback_manager: Optional[CallbackManager] = None,
	verbose: bool = False,
	handle_reasoning_failure_fn: Optional[Callable[[CallbackManager, Exception], ToolOutput]] = None,
	enable_instruct: bool = False,
	**kwargs: Any,
) -> "InstructReActAgentWorker":
	"""
	Convenience constructor method from set of BaseTools (Optional).

	NOTE: kwargs should have been exhausted by this point. In other words
	the various upstream components such as BaseSynthesizer (response synthesizer)
	or BaseRetriever should have picked up off their respective kwargs in their
	constructions.

	Returns:
		ReActAgentWorker
	"""
	llm = llm or Settings.llm
	if callback_manager is not None:
		llm.callback_manager = callback_manager
	return cls(
		tools=tools or [],
		tool_retriever=tool_retriever,
		user_id_list=user_id_list or AccountManager().get_users(),
		chat_group_id_list=chat_group_id_list or AccountManager().get_chat_groups(),
		llm=llm,
		max_iterations=max_iterations,
		react_chat_formatter=react_chat_formatter,
		output_parser=output_parser,
		callback_manager=callback_manager,
		verbose=verbose,
		handle_reasoning_failure_fn=handle_reasoning_failure_fn,
		enable_instruct=enable_instruct,
	)

labridge.agent.react.react_step.InstructReActAgentWorker.initialize_step(task, **kwargs)

Initialize step from task.

Source code in labridge\agent\react\react_step.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def initialize_step(self, task: Task, **kwargs: Any) -> TaskStep:
	"""Initialize step from task."""
	sources: List[ToolOutput] = []
	current_reasoning: List[BaseReasoningStep] = []
	# temporary memory for new messages
	new_memory = ChatMemoryBuffer.from_defaults()
	# the tool log list with ToolLogs.
	tool_log = []

	# initialize task state
	task_state = {
		"sources": sources,
		"current_reasoning": current_reasoning,
		"new_memory": new_memory,
		"tool_log": tool_log,
	}
	task.extra_state.update(task_state)

	return TaskStep(
		task_id=task.task_id,
		step_id=str(uuid.uuid4()),
		input=task.input,
		step_state={"is_first": True, "system_msg": task.extra_state["system_msg"]},
	)

labridge.agent.react.react_step.add_user_step_to_reasoning(step, memory, current_reasoning, verbose=False)

Add user step to memory.

Source code in labridge\agent\react\react_step.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def add_user_step_to_reasoning(
    step: TaskStep,
    memory: BaseMemory,
    current_reasoning: List[BaseReasoningStep],
    verbose: bool = False,
) -> None:
	"""Add user step to memory."""
	if "is_first" in step.step_state and step.step_state["is_first"]:
		# add to new memory
		record_str = step.input
		date, h_m_s = get_time()
		additional_kwargs = {
			LOG_DATE_NAME: date,
			LOG_TIME_NAME: h_m_s,
		}
		memory.put(
			ChatMessage(
				content=step.step_state["system_msg"],
				role=MessageRole.SYSTEM,
				additional_kwargs=additional_kwargs,
			)
		)
		memory.put(
			ChatMessage(
				content=record_str,
				role=MessageRole.USER,
				additional_kwargs=additional_kwargs,
			)
		)
		step.step_state["is_first"] = False
	else:
		reasoning_step = ObservationReasoningStep(observation=step.input)
		current_reasoning.append(reasoning_step)
		if verbose:
			print(f"Added user message to memory: {step.input}")

labridge.agent.react.react_step.update_intervene_status(task, enable_instruct, enable_comment, reply_in_speech)

Update the enable_instruct and enable_comment in the Reasoning & Acting.

PARAMETER DESCRIPTION
task

The processing task.

TYPE: Task

enable_instruct

If True, enable the user to instruct the agent's Reasoning.

TYPE: bool

enable_comment

If True, enable the user to comment on the agent's Acting.

TYPE: bool

reply_in_speech

If True, the agent will reply in speech.

TYPE: bool

RETURNS DESCRIPTION

None

Source code in labridge\agent\react\react_step.py
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def update_intervene_status(
	task: Task,
	enable_instruct: bool,
	enable_comment: bool,
	reply_in_speech: bool
):
	r"""
	Update the `enable_instruct` and `enable_comment` in the Reasoning & Acting.

	Args:
		task (Task): The processing task.
		enable_instruct (bool): If True, enable the user to instruct the agent's Reasoning.
		enable_comment (bool): If True, enable the user to comment on the agent's Acting.
		reply_in_speech (bool): If True, the agent will reply in speech.

	Returns:
		None
	"""
	task.extra_state["enable_instruct"] = enable_instruct
	task.extra_state["enable_comment"] = enable_comment
	task.extra_state["reply_in_speech"] = reply_in_speech